
seqfam Documentation
Release 1.0

Matthew Frampton

Jun 15, 2018

Contents

1 seqfam 3
1.1 Introduction . 3
1.2 Requirements and installation . 3
1.3 Tutorial . 4

1.3.1 gene_drop . 6
1.3.2 pof . 6
1.3.3 gene_burden . 7
1.3.4 relatedness . 9
1.3.5 sge . 10
1.3.6 References . 11

1.4 API reference . 11
1.4.1 gene_drop . 11
1.4.2 gene_burden . 13
1.4.3 pof . 14
1.4.4 relatedness . 15
1.4.5 sge . 16
1.4.6 misc . 16

2 Indices and tables 17

Bibliography 19

Python Module Index 21

i

ii

seqfam Documentation, Release 1.0

Contents:

Contents 1

seqfam Documentation, Release 1.0

2 Contents

CHAPTER 1

seqfam

1.1 Introduction

The seqfam package is primarily designed for analysing next generation sequencing (NGS) DNA data from families
with known pedigree information in order to identify rare variants that are potentially causal of a disease/trait of
interest. It uses the popular and versatile Pandas library, and can be straightforwardly integrated into existing analysis
code/pipelines. Seqfam can be used to verify pedigree information, to perform Monte Carlo gene dropping, to
undertake regression-based gene burden testing, and to identify variants which segregate by affection status in families
via user-defined pattern of occurrence rules. Additionally, it can generate scripts for running analyses in a MapReduce
pattern on a computer cluster, something which is usually desirable in NGS data analysis and indeed big data analysis
in general.

1.2 Requirements and installation

Seqfam is compatible with Windows, Mac OX X and Linux operating systems. It is coded using Python 3.6 but can
also be run by Python 2.7. It requires the following packages (listed in requirements.txt):

• pandas==0.20.3

• scipy==0.19.1

• natsort==5.1.1

• numpy==1.13.3

• setuptools==38.4.0

• statsmodels==0.8.0

Run the following commands to clone and install from GitHub.

$ git clone https://github.com/mframpton/seqfam
$ cd seqfam

(continues on next page)

3

https://pandas.pydata.org/

seqfam Documentation, Release 1.0

(continued from previous page)

$ pip install -r requirements.txt
$ python setup.py install

1.3 Tutorial

This section describes the functionality and methods employed by seqfam’s 5 modules, which are:

1. gene_drop: Monte Carlo gene dropping;

2. pof: variant pattern of occurrence in families;

3. gene_burden: regression-based gene burden testing;

4. relatedness: identification of duplicates and verification of ascertained pedigree information via kinship
coefficients;

5. sge: Sun Grid Engine (SGE) array job creation.

Figure 1 provides a visual representation of modules 1–4.

The repository contains additional scripts in src/examples which demonstrate the functionality of the
modules on example data, including files in the data directory. The scripts are 1_example_gene_drop.
py, 2_example_pof.py, 3_example_gene_burden.py, 4_example_relatedness.py, and
5_example_sge.py. The reader can also refer to Table 1 for a summary of the main user functions of the
5 seqfam modules. Data in the example data files are derived from the whole exome sequencing of a large cohort of
over 200 families with inflammatory bowel disease.

Table 1: Table 1. Summary of main user functions in seqfam modules
Method Description Input Output
gene_drop.
Cohort.
gene_drop()

Monte Carlo gene dropping Cohort fam file (pedigree info),
variant population AF, cohort AF,
list of samples genotyped, # inter-
actions

p-value

pof.Pof.
get_family_pass_name_l()

Variant POF with respect
to affected (& unaffected)
members

Variant POF rule & genotypes List of families
whose POF rules is
passed by variant

gene_burden.
CMC.
do_multivariate_tests()

Regression-based gene bur-
den testing

Files containing samples, geno-
types & covariates files; output path

Data frame and csv
file containing bur-
den test results

relatedness.
Relatedness.
find_duplicates()

Identify duplicates from
kinship coefficient

KING sample pair kinship coeffi-
cient file

List of duplicates

relatedness.
Relatedness.
get_exp_obs_df()

Map pedigrees & kinship
coefficients to expected &
observed degrees of rela-
tionship

Cohort fam, KING within-family
sample pair kinship coefficient file

Data frame of ex-
pected & observed
degrees of relation-
ship

sge.SGE.
make_map_reduce_jobs()

Make computer cluster ar-
ray job scripts.

Filename prefix, lists of map tasks,
map tasks to execute and reduce
tasks.

Scripts required to
run array job includ-
ing master submit
script

4 Chapter 1. seqfam

seqfam Documentation, Release 1.0

Fig. 1: Panel A represents the Cohort.gene_drop() method in the gene_drop module which performs Monte
Carlo gene dropping. On a single iteration, for each family the algorithm seeds founder genotypes based on the variant
population allele frequency (AF) and then gene drops via depth-first traversals. Having done this for all families, a
simulated cohort AF is calculated and following many iterations (e.g. 10,000), a p-value, the proportion of iterations
where cohort AF < simulated cohort AF, is outputted. Panel B represents the Pof.get_family_pass_name_l()
method in the pof module. Prior to calling the method, each family is assigned a variant pattern of occurrence
(POF) rule. The method then takes a variant’s genotypes and returns families whose POF rule is passed. Panel C
represents the CMC.do_multivariate_tests() method in the gene_burden module. This method takes
sample affection status and variant genotypes across multiple genes, plus optionally covariates such as ancestry PCA
coordinates. For each gene, the method aggregates the variants by AF, constructs h0 and h1 logit models which
may include the covariates, and then performs a log-likelihood ratio test. Panel D represents the Relatedness.
get_exp_obs_df()method in the relatednessmodule. For input, this takes pedigree information and kinship
coefficients from KING for each within-family sample pair. It maps these data to expected and observed degrees of
relationship respectively, returning a DataFrame.

1.3. Tutorial 5

http://people.virginia.edu/~wc9c/KING/

seqfam Documentation, Release 1.0

1.3.1 gene_drop

For a rare variant to be considered potentially causal of a particular trait/disease based on in silico analysis, it should
satisfy various criteria, such as being biologically plausible and predicted to be pathogenic. The gene_drop module
can be used to further assess candidate variants via Monte Carlo gene dropping.

Given the structure of the families, Monte Carlo gene dropping can indicate whether a variant is enriched in the cohort
relative to the general population, and assuming the trait/disease is more prevalent in the cohort, such enrichment sup-
ports causality. The gene_drop module can be considered complementary to the RVsharing R package [BYP+14]
which calculates the probability of multiple affected relatives sharing a rare variant under the assumption of no disease
association or linkage.

The module requires a pedigree file in fam format as input. The example script 1_example_gene_drop.py
shows how to use gene_drop with the pedigrees in data/cohort.fam. It first creates a gene_drop.Cohort
object from cohort.fam which stores all of the pedigrees as trees.

from seqfam.gene_drop import Cohort
...
cohort_fam = os.path.join(data_dir,"cohort.fam")
cohort = Cohort(cohort_fam)

For a hypothetical variant of interest, the script then specifies:

1. allele frequency in the general population (pop_af) is 0.025;

2. the subset of samples which have genotypes (sample_genotyped_l).

Now the gene dropping can be performed via the gene_drop.Cohort.gene_drop() method. The script uses
the method to assess whether increasing cohort allele frequencies (cohort_af) indicate enrichment relative to the
general population. For each cohort_af, the method returns an enrichment p-value (p), and so as cohort_af increases,
p decreases.

pop_af = 0.025
for cohort_af in [0.025,0.03,0.035,0.04]:

p = cohort.gene_drop(pop_af, cohort_af, sample_genotyped_l, 1000)

The method gene drops in a family in the following way. First, it assigns a genotype (number of copies of the mutant
allele) to each founder using a Binomial distribution where the number of trials is 2 and the probability of success in
each trial is pop_af. Hence the founders are assumed to be unrelated. It then performs a depth-first traversal starting
from each founder (1 per spousal pair), and for heterozygotes, uses a random number generator to determine which
parental allele to pass onto the child. Thus, every individual in the family is assigned a genotype.

By default, for each variant of interest, the method performs 10,000 iterations of gene dropping in the familial cohort.
In each iteration it gene drops in each family once and then calculates the resulting simulated cohort allele frequency
from the genotyped samples (sample_genotyped_l). After completing all iterations of gene dropping, the method
returns the p-value (p), which is the proportion of iterations where cohort_af is less than or equal to the simulated
cohort allele frequency. A low proportion, e.g. < 5%, can be taken as evidence of enrichment.

1.3.2 pof

Like gene_drop, the pof module can provide additional evidence for whether particular rare variants are causal of
a particular trait/disease. It is intended for identifying variants which are carried by most or all affected members of a
family (As), or even which segregate between As and unaffected members (Ns).

For each family, the user uses the pof module to define a variant pattern of occurrence (POF) rule and check whether
any supplied variants pass. The rule can specify a minimum value for the proportion As who are carriers (A_carrier_p),
and/or a minimum difference between the proportion of As and Ns who are carriers (AN_carrier_diff). Constraints for
the number of genotyped As and Ns can also be added, (A_n_min and N_n_min respectively).

6 Chapter 1. seqfam

https://cran.r-project.org/web/packages/RVsharing/index.html
https://www.cog-genomics.org/plink2/formats#fam

seqfam Documentation, Release 1.0

The example script 2_example_pof.py provides an illustrative example. It first creates a couple of pof.Family
objects to represent 2 families and their POF rule.

import pandas as pd
from seqfam.pof import Family,Pof

...

family_1 = Family("1","A3N2",["1_1","1_2","1_3"],["1_4","1_5"],A_n_min=3,N_n_min=2,AN_
→˓carrier_diff=0.5)
family_2 = Family("2","A4N1",["2_10","2_11","2_12","2_13","2_14"],["2_15"],A_n_min=4,
→˓N_n_min=1,A_carrier_p=1.0)

Family 1 is specified as having 3 As and 2 Ns, and its POF rule requires AN_carrier_diff to be 0.5. Family 2 has 4 As
and 1 N, and a rule requiring all the As to be carriers. The rule in both families requires all members to be genotyped
(see the A_n_min and N_n_min parameters).

The script next makes the genotypes for a hypothetical variant in a Pandas Series called variant_genotypes_s.
Finally, it creates a pof.Pof object from the 2 pof.Family objects, and then calls the pof.Pof.
get_family_pass_name_l() method to obtain a list of the families whose POF rule is passed by this variant.

family_l = [family_1,family_2]
pof = Pof(family_l)
family_pass_l = pof.get_family_pass_name_l(variant_genotypes_s)
print(family_pass_l)

1.3.3 gene_burden

The gene_burden.py module implements the Combined Multivariate and Collapsing (CMC) burden test [LL08]
for detecting rare causal variants, where the multivariate test is a log-likelihood ratio test. The user can supply covari-
ates to control for potential confounders such as divergent ancestry. This burden test should be applied to unrelated
samples, and hence is of no use for cohorts containing few families. However, for cohorts containing a relatively large
number of families, a sufficient number of unrelated cases can be extracted and pooled with a separate set of unre-
lated controls. Burden tests aggregate rare variants in a gene or functional unit into a single score ([LL08]; [MR09];
[ME10]; [PKdB+10], and are one broad class of statistical methods which combine the effects of rare variants in
order to increase power over single marker approaches. Sequence kernel association testing (SKAT) [WLCeal11] is
another widely-used sub-category of such methods. In general, burden testing is more powerful than SKAT when a
large proportion of variants are causal and are all deleterious/protective.

The 3_example_gene_burden.py script shows how to use the gene_burden module to perform CMC tests
which control for covariates. Here, we say that variants are grouped by the tested units (gene / other functional unit),
and within the groups, they are aggregated, usually within population allele frequency (PAF) ranges. Aggregation
means that within each aggregation category (e.g. PAF < 1%), an individual sample is given the value 1 if it carries
any variants, otherwise 0. The example script performs 1 CMC test per gene (i.e. it groups variants by gene), where
variants are aggregated within 2 PAF ranges: PAF < 1% and 1% ≤ PAF < 5% (any variants with PAF ≥ 5% remain
unaggregated).

The input files are in the data/gene_burden directory: samples.csv, genotypes.csv and covariates.
csv. The samples.csv file contains the samples’ ID and affection status where 2 indicates a case and 1 a control.
The genotypes.csv file can be created by combining genotypes from a VCF file with variant annotations (e.g.
from the Variant Effect Predictor). It contains 1 row per variant with columns for the sample genotypes (the number
of alternate alleles), plus columns for variant grouping and aggregation e.g. gene and PAF. The covariates.csv
file contains the covariates to control for, which in this instance are ancestry Principal Components Analysis (PCA)
coordinates.

1.3. Tutorial 7

http://www.internationalgenome.org/wiki/Analysis/Variant%20Call%20Format/vcf-variant-call-format-version-40/
https://www.ensembl.org/info/docs/tools/vep/index.html

seqfam Documentation, Release 1.0

The script first reads samples.csv into a Pandas Series, and genotypes.csv and covariates.csv into
Pandas DataFrames. These DataFrames are indexed by variant ID and covariate name respectively.

import pandas as pd
from seqfam.gene_burden import CMC
...
#Read the samples into a Series.
sample_s = pd.read_csv(samples_path, dtype=str, index_col="Sample ID")
sample_s["Affection"] = sample_s["Affection"].astype(int)
sample_s = sample_s[sample_s != 0]

#Read the variant annotations + genotypes into a DataFrame.
variant_col,gene_col = "VARIANT_ID","Gene"
pop_frq_col_l = ["database1_AF","database2_AF","database3_AF"]
geno_df = pd.read_csv(genotypes_path, dtype=str, usecols=[variant_col,gene_col] + pop_
→˓frq_col_l + sample_s.index.tolist(), index_col=variant_col)
geno_df.loc[:,pop_frq_col_l] = geno_df.loc[:,pop_frq_col_l].apply(pd.to_numeric,
→˓axis=1)
geno_df.loc[:,sample_s.index] = geno_df.loc[:,sample_s.index].apply(pd.to_numeric,
→˓errors='coerce', downcast='integer', axis=1)
geno_df.loc[:,sample_s.index] = geno_df.loc[:,sample_s.index].fillna(0)

#Read the covariates into a DataFrame.
covar_df = None if covariates_path == None else pd.read_csv(covariates_path, index_
→˓col=0)

Having created a gene_burden.CMC object, the script calls its gene_burden.CMC.
assign_variants_to_pop_frq_cats() method in order to map the variants to the desired PAF range
categories. Multiple PAF columns (databases) are used here, ordered by descending preference. The mapping is
stored in a new pop_frq_cat column in the genotypes DataFrame.

cmc = CMC()
geno_df = cmc.assign_variants_to_pop_frq_cats(geno_df, pop_frq_col_l, {"rare":0.01,
→˓"mod_rare":0.05})

Finally, the script calls the gene_burden.CMC.do_multivariate_tests() method to perform the CMC
tests, specifying the gene column for grouping the variants, and the new pop_frq_cat column for aggregation.

agg_col = "pop_frq_cat"
cmc_result_df = cmc.do_multivariate_tests(sample_s, geno_df, group_col=gene_col, agg_
→˓col="pop_frq_cat", agg_val_l=["rare","mod_rare"], covar_df=covar_df, results_
→˓path=results_path)

For each gene, this method performs a multivariate test, which is a log-likelihood ratio test based on Wilk’s theorem:

𝜒2 = 2(𝑙𝑙ℎ0 − 𝑙𝑙ℎ1); 𝑑𝑓 = 𝑑𝑓ℎ1 − 𝑑𝑓ℎ0

where ll is log-likelihood, h1 is the alternative hypothesis, h0 is the null hypothesis and df is degrees of freedom.
Specifically, it is a log-likelihood ratio test on null and alternative hypothesis logit models where the dependent variable
is derived from affection status, the variant variables (aggregated and/or unaggregated) are independent variables in
the alternative model and the covariates are independent variables in both. The logit models are fitted using the
Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm.

The results are written to a CSV (comma-separated values) file (results_path) and also returned in a DataFrame
(cmc_result_df). They include the number of variants in each aggregation category (rare, mod_rare), the number of
unaggregated variants (unagg), the proportion of affecteds and unaffecteds which have value 1 for each variant variable
(rare_aff_p . . . unagg_unaff_p), the log-likelihood ratio test p-value with/without covariates (llr_p and llr_cov_p),

8 Chapter 1. seqfam

seqfam Documentation, Release 1.0

and the coefficient/p-value for each aggregated variant variable and covariate in the h1 logit model (rare_c, rare_p . . .
PC5_c, PC5_p).

>>> print(cmc_result_df.head().to_string())
rare mod_rare unagg rare_aff_p rare_unaff_p mod_rare_aff_p mod_rare_

→˓unaff_p unagg_aff_p unagg_unaff_p llr_p llr_cov_p rare_c rare_p
→˓mod_rare_c mod_rare_p PC1_c PC1_p PC2_c PC2_p PC3_c
→˓ PC3_p PC4_c PC4_p PC5_c PC5_p
Gene
GENE_81 17 4 0 0.083333 0.041667 0.340909 0.
→˓090909 NaN NaN 8.776693e-11 0.000075 0.260649 0.607068
→˓1.317017 0.000041 0.350426 2.719782e-10 0.742543 9.178604e-11 -0.286762 1.
→˓989026e-10 -0.933229 2.921982e-26 -0.196124 0.100419
GENE_10 1 0 0 0.000000 0.003788 NaN
→˓ NaN NaN NaN NaN 0.009316 -11.325180 0.825768
→˓ NaN NaN 0.347303 3.341802e-10 0.670772 1.993786e-09 -0.289419 9.
→˓064199e-11 -0.978531 2.720945e-28 -0.193831 0.096250
GENE_16 4 0 0 0.007576 0.034091 NaN
→˓ NaN NaN NaN NaN 0.013386 -2.475089 0.014941
→˓ NaN NaN 0.337994 7.855867e-10 0.698458 4.950072e-10 -0.282116 2.
→˓037413e-10 -0.972062 6.228652e-28 -0.154929 0.185172
GENE_59 3 0 0 0.000000 0.011364 NaN
→˓ NaN NaN NaN NaN 0.014363 -10.955116 0.897996
→˓ NaN NaN 0.333042 1.325734e-09 0.675311 1.539985e-09 -0.284952 1.
→˓417334e-10 -0.961612 3.308430e-28 -0.176737 0.128946
GENE_15 2 0 0 0.000000 0.007576 NaN
→˓ NaN NaN NaN NaN 0.027556 -10.728126 0.894869
→˓ NaN NaN 0.329435 1.331849e-09 0.697045 6.262195e-10 -0.281625 2.
→˓635041e-10 -0.956502 6.064632e-28 -0.185669 0.109201

If the user ran the tests without covariates, then the returned results DataFrame would not include the llr_cov_p and
PC covariate columns, and the columns rare_c . . . mod_rare_p would correspond to the coefficient/p-value in the h0
logit model.

1.3.4 relatedness

The potential for genetic discovery in DNA sequencing data is reduced when samples are mislabelled. Hence, neces-
sary quality control steps include identifying duplicates, and in the case of familial samples, verifying the ascertained
familial relationships described in the pedigrees. The relatedness module facilitates these quality control steps
and is used in conjunction with KING software [MMReal10]. Given genotypes for relatively common variants, KING
can efficiently calculate a kinship coefficient for each sample pair. The relatedness module can then map each
kinship coefficient to a degree of relationship and check it corresponds with the pedigree. KING is often already part
of NGS analysis pipelines, so incorporating relatedness is straightforward. Peddy [PQ17] is an alternative which
does not require KING.

As input, the relatedness module requires a pedigree information file in fam format and a kinship co-
efficients file from KING, either containing within or between-family sample pairs. The example script
4_example_relatedness.py uses data/cohort.fam for the former and data/relatedness/king.
kinship.ibs (within-family sample pairs) for the latter. It creates a relatedness.Relatedness ob-
ject with these paths, and then calls the object’s relatedness.Relatedness.find_duplicates() and
relatedness.Relatedness.get_exp_obs_df() methods.

from seqfam.relatedness import Relatedness
import pandas as pd
...
relatedness = Relatedness(wf_file=wf_file,cohort_tsv=cohort_tsv,bf_file=None)

(continues on next page)

1.3. Tutorial 9

http://people.virginia.edu/~wc9c/KING/
https://github.com/brentp/peddy
https://www.cog-genomics.org/plink2/formats#fam

seqfam Documentation, Release 1.0

(continued from previous page)

#Within-family duplicates.
wf_duplicate_l = relatedness.find_duplicates(bf_b=False)
print(wf_duplicate_l)
#Between-family duplicates... (Uncomment if you have a bf_file).
#bf_duplicate_l = relatedness.find_duplicates(bf_b=True)
#print(bf_duplicate_l)

#Expected versus observed within-family relationships.
exp_obs_df = relatedness.get_exp_obs_df()

The relatedness.Relatedness.find_duplicates() method returns a list of any duplicate samples, and
the relatedness.Relatedness.get_exp_obs_df() method returns a Pandas DataFrame containing the
expected and observed degree of relationship for each within-family sample pair.

>>> print(wf_duplicate_l)
['171b_1448,171b_1449']
>>> print(exp_obs_df)

EXP_REL Kinship OBS_REL
FAMILY ID1 ID2
1 44 47 1 0.2584 1
2 6 20 4 0.0390 4

21 4 0.0688 3
20 21 4 0.0051 4

3 501 838 1 0.2052 1
844 2 0.1081 2

838 844 1 0.2572 1
...

The user can modify the mapping from kinship coefficient to relationship degree, but by default it is as specified
in KING documentation: > 0.354 for duplicate samples/monozygotic twins, 0.177–0.354 for 1st degree relatives,
0.0884–0.177 for 2nd degree relatives, 0.0442–0.0884 for 3rd degree relatives, and < 0.0442 for unrelated. The final
line of the script prints the sample pairs which have a different expected and observed degree of relationship.

print(exp_obs_df.loc[(exp_obs_df["EXP_REL"]!=exp_obs_df["OBS_REL"]) & (pd.notnull(exp_
→˓obs_df["Kinship"])),:])

1.3.5 sge

The sge module has general utility in analysing NGS data, and indeed any big data on computer clusters. Many NGS
data analyses can be cast as “embarassingly parallel problems” and hence executed more efficiently on a computer
cluster via a MapReduce pattern: the overall task is decomposed into independent sub-tasks (map tasks) which run
in parallel, and on their completion, a reduce action merges/filters/summarises the results. For example, gene burden
testing across the whole exome can be decomposed into independent sub-tasks by splitting the exome into sub-units
e.g. chromosomes. Sun Grid Engine (SGE) is a widely used batch-queueing system, and analyses can be performed
in a MapReduce pattern on SGE via array jobs. Given a list of map tasks and the reduce task(s), the sge module can
create the scripts for submitting and running an array job.

The script 5_example_sge.py provides an example. It first makes lists of map tasks (map_task_l) and map tasks
to execute (map_task_exec_l) via the custom get_map_task_l function (see the script), and then a reduce task string
(reduce_tasks). While map_task_l contains all map tasks, map_task_exec_l contains the subset which have not yet
completed successfully and hence need to run.

10 Chapter 1. seqfam

seqfam Documentation, Release 1.0

from seqfam.sge import SGE
...
print("Making map and reduce tasks...")
chr_l = [str(chrom) for chrom in range(1,23)] + ["X","Y"]
[map_task_l, map_task_exec_l] = get_map_task_l(chr_l)
reduce_tasks = "\n".join(["python 2_merge_results.py","python 3_summarise_results.py
→˓"])

Next, the script creates an sge.SGE object which stores the directory where job scripts will be writ-
ten (the variable script_dir which here has the value data/sge). Finally it calls the object’s sge.SGE.
make_map_reduce_jobs() method with the following arguments: a job script name prefix (here test),
map_task_l, map_task_exec_l and reduce_tasks.

sge = SGE(script_dir)
sge.make_map_reduce_jobs("test", map_task_l, reduce_tasks, map_task_exec_l)

This writes the job scripts, and were they for a real array job (they are not), the user could submit it to the job
scheduler by running the master executable submit script submit_map_reduce.sh. The generated file test.
map_task_exec.txt specifies which map tasks to run (map_tasks_exec_l).

1.3.6 References

1.4 API reference

1.4.1 gene_drop

class gene_drop.Cohort(cohort_fam)
Represents a cohort of familial individuals as a list of FamilyTree objects.

gene_drop(pop_af, cohort_af, sample_genotyped_l, gene_drop_n)
Perform gene dropping across the cohort and return the proportion of iterations in which the simulated
allele frequency is less than or equal to the cohort frequency.

Args:

pop_af (float): population allele frequency.
cohort_af (float): cohort allele frequency.
sample_genotyped (list of strs): the list of samples genotyped for this variant from which cohort af
was calculated.
gene_drop_n (int): number of iterations to perform.

Returns: cohort_enriched_p (float): proportion of iterations in which the simulated allele frequency is
less than or equal to the cohort frequency.

get_all_family_l()
Get a list of all the families in the cohort.

Returns: all_family_l (list): list of IDs of families present in cohort.

get_all_sample_l()
Get a list of all of the samples in the cohort.

Returns: all_sample_l (list): list of sample IDs tuples (<FAMILY_ID>,<INDIVIDUAL_ID>).

make_fam_tree(ped_df)
For a family, make a list of Nodes and from these, a Family Tree.

1.4. API reference 11

seqfam Documentation, Release 1.0

Args: ped_df (pandas.core.frame.DataFrame): contains the pedigree information for the family.

Returns: family_tree (FamilyTree obj): represents the family.

remove(family_l)
Remove families from the cohort (self.fam_tree_l).

class gene_drop.FamilyTree(logger, id, node_l)
Represents a family tree with node objects and has methods to perform gene-dropping.

gene_drop(pop_af, ind_gtyped_l)
Main method for performing gene dropping for 1 variant in this family tree.

Args:

pop_af (float): population allele frequency of the variant.
ind_gtyped_l (list of strs): IDs of individuals in this family who have a genotype for the variant.

Returns: carrier_allele_count (int): the number of (genotyped) carriers in the family after dropping the
gene.

gene_drop_dfs(start_node)
Perform gene dropping in the family tree starting from the specified start node and using a depth-first
traversal.

Args: start_node (Node): node from which to start the gene dropping.

Returns: visited (set): nodes visited during the depth-first traversal.

log_all_genotypes()
Log all of the node genotypes.

log_all_info()
Log all of the information about each node in the family tree.

set_offspring_genotype(node)
Set a node’s genoytpe based on its parents’ genotypes. If the parent is heterozygous then the probability
of the variant allele being passed to the offspring is 0.5.

Args: node (Node): the node whose genotype will be set.

class gene_drop.Node(id, parent_l, spouse, children_l)
Represents an individual (node) in a family tree.

get_summary_str()
Get a summary string for the node.

Returns: summary_str: the object attributes as a string.

class gene_drop.NodeGenerator
Generates nodes to represent individuals in a pedigree.

convert_ped_df_to_node_l(ped_df)
Create the nodes.

Args: ped_df (DataFrame):

Returns: node_l (list of Nodes): the Node objects represent the individuals in the pedigree DataFrame.

set_relationships(ped_row_s, name_node_dict)
Set the relationships between the nodes.

Args:

ped_row_s (Series): row from a pedigree dataframe, representing 1 individual.
name_node_dict (dictionary): maps from node name to node.

12 Chapter 1. seqfam

seqfam Documentation, Release 1.0

1.4.2 gene_burden

class gene_burden.CMC
Implements the combined multivariate and collapsing (CMC) burden test, where the multivariate test is a log-
likelihood ratio test.

aggregate_by_agg_col(geno_df)
Aggregate genotypes within variant population frequency categories.

Args: geno_df (DataFrame): index is the variant ID and columns must include (1) group_col (see below);
(2) agg_col (see below); (3) sample genotypes (# copies of alternate allele 0-2).

Returns: geno_agg_df (DataFrame): index is the gene & variant aggregation category, and columns are
the # of variants for each sample.

assign_variants_to_pop_frq_cats(geno_df, pop_frq_col_l, pop_frq_cat_dict)
Assign variants to allele population frequency range categories.

Args:

geno_df (DataFrame): index is the variant ID and columns must include the population allele
frequency columns listed in the pop_frq_col_l parameter (see below)
pop_frq_col_l (list of str): contains the names of the population allele frequency columns in
descending order of preference.
pop_frq_cat_dict (dict of (str,float)): mapping of frequency category name to exclusive upper bound.

Returns: geno_df (DataFrame): the inputted geno_df DataFrame with an extra column for the variant
aggregation category (“pop_frq_cat”).

do_multivariate_test(geno_agg_gene_df, y, covar_df=None)
Do a multivariate test for 1 gene.

Args:

geno_agg_gene_df (DataFrame): index is the gene & variant aggregation category, and columns are
the # of variants for each sample.
y (numpy.ndarray): values are 0/1 (unaffected/affected).
covar_df (DataFrame): index is the covariate names and columns are samples.

Returns: test_result_s (Series): multivariate test results for 1 gene/functional unit containing (1) llr_p
(and llr_cov_p), the log-likelihood ratio p-value (after controlling for covariates); (2) coefficient &
p-value for each independent variable.

do_multivariate_tests(sample_s, geno_df, group_col, agg_col, agg_cat_l, covar_df=None, re-
sults_path=None)

Main method for doing multivariate tests.

Args:

sample_s (Series): index is the sample names, and values are 1/2 (unaffected/affected).
geno_df (DataFrame): index is the variant ID and columns must include (1) group_col (see below);
(2) agg_col (see below); (3) sample genotypes (# copies of alternate allele 0-2).
group_col (str): column in geno_df identifying the groups of variants to be tested for association
with the phenotype e.g. gene, pathway or any other entity.
agg_col (str): column containing the aggregation categories (e.g. population allele frequency range) -
variants in the same group and aggregation category will be aggregated (collapsed into a
dichotomous variable 0/1).
agg_cat_l (list of strs): specifies which aggregation categories to present results for (i.e. coefficient
and p-value in the alternative hypothesis logit model).
covar_df (DataFrame): index is the covariate names and columns are the samples.

1.4. API reference 13

seqfam Documentation, Release 1.0

results_path (str): path to results file.

Returns: result_df (DataFrame): multivariate test results, where the index is the variant group (e.g.
gene) and columns are (1) # variants in each aggregated (& unaggregated) category; (2) propor-
tion of (un)affecteds carrying a variant in each aggregated (& unaggregated) category; (3) llr_p (and
llr_cov_p), the log-likelihood ratio p-value (after controlling for covariates); (4) coefficient & p-value
for each independent variable.

fit_logit_model(X_df, y)
Fit a logit model.

Args:

X_df: the independent variables (covariates and or aggregated genotypes) for 1 gene.
y (numpy.ndarray): values are 0/1 (unaffected/affected).

Returns: logit_result (statsmodels.discrete.discrete_model.BinaryResultsWrapper): contains results
from fitting logit regression model.

get_agg_cat_count_df(geno_agg_df)
For each group in group_col (e.g. gene), get the number of variants in each variant aggregation category
(in agg_col) e.g. population allele frequency range.

Args: geno_agg_df (DataFrame): index is the gene & variant aggregation category, and columns are the
of variants for each sample.

Returns: agg_cat_count_df (DataFrame): index is the gene and columns are # variants in each aggregated
category and # unaggregated.

get_agg_cat_prop_by_affection(geno_agg_df)
For each group in group_col (e.g. gene), get the proportion of (un)affecteds who are carriers in each variant
aggregation category (in agg_col) e.g. population allele frequency range.

Args: geno_agg_df (DataFrame): index is the group_col & aggregation category, and columns are the #
of variants for each sample.

Returns: agg_cat_prop_df(DataFrame): index is the group_col, and columns indicate the proportion of
(un)affected carriers in each variant aggregation category, plus unaggregated variants.

get_coef_pval_l(logit_result, covar_b=False)
Get the coefficients and corresponding p-values of the independent variables in the logit model.

Args:

logit_result (statsmodels.discrete.discrete_model.BinaryResultsWrapper): contains results from
fitting logit regression model.

Returns: coef_pval_l (list): list of coefficients and corresponding p-values.

1.4.3 pof

class pof.Family(name, category, A_l, N_l, A_n_min=0, N_n_min=0, A_p_min=None,
AN_p_diff_min=None)

Represents a Family with various attributes: name, category (with respect to number of affected and unaffected
members), IDs of affected and unaffected members, plus attributes relating to conditions which must be satisfied
for a variant to “pass” in the family. These are the minimum number of affected members who are carriers, the
minimum number of unaffecteds who are carriers, the minimum proportion of affecteds who are carriers, and
the minimum difference in the proportion of affecteds and unaffecteds who are carriers.

log_info()
Log the object attributes.

14 Chapter 1. seqfam

seqfam Documentation, Release 1.0

pass_po(variant_genotypes_s, no_call=’NA’, carrier_call=[’1’, ’2’])
Check whether a variant passes in the family.

Args:

variant_genotypes_s (Series): the genotypes of family members for the variant of interest.
no_call (str): how a no-call is represented in the genotype data.
carrier_call (list of strs): genotypes which correspond to carrying the variant.

Returns: boolean: whether the variant passes.

class pof.Pof(family_l)
Pattern of (variant) occurrence: stores a list of family objects, and has a function to check if the genotypes for a
variant of interest satisfy the sepcified pattern of occurence criteria in any of these families.

get_family_pass_name_l(variant_genotypes_s)
Checks whether the genotypes for a variant of interest satisfy the specified pattern of occurrence criteria
(pass) in any of the supplied families.

Args: variant_genotypes_s (Series): contains the genotypes for the variant of interest for all individuals
in the families contained in the family_l attribute.

Returns: pass_l (list of Family objects): the list of families in which the variant of interest passes.

1.4.4 relatedness

class relatedness.Relatedness(bf_file=None, wf_file=None, cohort_fam=None, kin-
ship_coef_thresh_dict={’0’: 0.354, ’1’: 0.177, ’2’: 0.0844,
’3’: 0.0442})

Provides methods to find duplicates either between or within families, and to identify pairs of individuals within
a family whose observed relationship (KING kinship coefficient) is different than expected given the pedigree.

convert_tuple_to_ids(duplicate_pair_tuple)
Convert a tuple containing the IDs of 2 duplicate individuals into a string.

Args: duplicate_pair_tuple (tuple): tuple containing IDs of 2 duplicate individuals.

Returns: duplicate_pair_str (str): string containing IDs of the 2 duplicate individuals.

find_duplicates(bf_b=True)
Find either between-family or within-family duplicates using the corresponding KING kinship coefficient
output.

Args: bf_b (boolean): whether to look for duplicates from different families (True) or duplicates within
the same family, defaults to True.

Returns: duplicate_l (list of strs): pairs of identified duplicates.

get_exp_obs_df()
Make a DataFrame containing the expected and observed relationships for individuals in the same family.

Returns: exp_obs_df (DataFrame): contains columns for the expected and observed relationships.

get_exp_rel(ind_pair_s, relations_df)
Get the expected degree of relationship (1-4) between a pair of individuals.

Args: ind_pair_s (Series): the IDs of a pair of individuals.

Returns: exp_rel (str): the expected degree of relationship.

get_exp_rel_df(fam_df, fam_ind_seq_dict)
Make a dataframe containing the expected relationships between individuals in a family.

1.4. API reference 15

seqfam Documentation, Release 1.0

Args: fam_df (DataFrame): contains the pedigree information for a family.

Returns: exp_rel_df (DataFrame): contains the expected relationships between the family members.

get_kinship_coef(s)
Retrieve the kinship coefficient from a Series representing a row in a KING output file.

Args: s (Series): represents a row in a KING output file.

Returns: kinship_coef (str): kinship coefficient in the row.

get_relations_s(ind, fam_df)
For 1 individual, get a series containing lists of their siblings, parents and grandparents.

Args:

ind (str): individual ID
fam_df (DataFrame): contains the pedigree information for a family.

Returns: relations_s (Series): contains lists of the individual’s siblings, parents, grandparents and great-
grandparents.

1.4.5 sge

class sge.SGE(scripts_dir)
This class can create the scripts required for submitting and running an array job on a computer cluster with a
Sungrid Engine job scheduler.

make_map_reduce_jobs(prep, map_task_l, reduce_task, map_task_exec_l=[], mem=’14G’)
Delete existing .sh files in the scripts dir.

1.4.6 misc

class misc.Logger
Class for time-stamped logging.

log(txt)
Prints a time-stamped text string.

Args: txt (str): text string to print.

16 Chapter 1. seqfam

CHAPTER 2

Indices and tables

• genindex

• modindex

• search

17

seqfam Documentation, Release 1.0

18 Chapter 2. Indices and tables

Bibliography

[BYP+14] A. Bureau, S. G. Younkin, M. M. Parker, J. E. Bailey-Wilson, M. L. Marazita, J. C. Murray, E. Mangold,
H. Albacha-Hejazi, T. H. Beaty, and I. Ruczinski. Inferring rare disease risk variants based on exact probabilities
of sharing by multiple affected relatives. Bioinformatics, 30(15):2189–2196, Aug 2014.

[LL08] B. Li and S. M. Leal. Methods for detecting associations with rare variants for common diseases: application
to analysis of sequence data. Am. J. Hum. Genet., 83(3):311–321, Sep 2008.

[MR09] B. E. Madsen and Browning S. R. A groupwise association test for rare mutations using a weighted sum
statistic. PLoS Genetics, 2009.

[MMReal10] A. Manichaikul, J. C. Mychaleckyj, S. S. Rich, and et al. Robust relationship inference in genome-wide
association studies. Bioinformatics, 26(22):2867–2873, 2010.

[ME10] A. P. Morris and Zeggini E. An evaluation of statistical approaches to rare variant analysis in genetic associ-
ation studies. Genetic Epidemiology, 34(2):188–193, 2010.

[PQ17] B. S. Pedersen and A. R. Quinlan. Who’s Who? Detecting and Resolving Sample Anomalies in Human DNA
Sequencing Studies with Peddy. Am. J. Hum. Genet., 100(3):406–413, Mar 2017.

[PKdB+10] A. L. Price, G. V. Kryukov, P. I. de Bakker, S. M. Purcell, J. Staples, L. J. Wei, and S. R. Sunyaev. Pooled
association tests for rare variants in exon-resequencing studies. Am. J. Hum. Genet., 86(6):832–838, Jun 2010.

[WLCeal11] M. C. Wu, S. Lee, T. Cai, and et al. Rare-variant association testing for sequencing data with the sequence
kernel association test. American Journal of Human Genetics, 89(1):82–93, 2011.

19

seqfam Documentation, Release 1.0

20 Bibliography

Python Module Index

g
gene_burden, 13
gene_drop, 11

m
misc, 16

p
pof, 14

r
relatedness, 15

s
sge, 16

21

seqfam Documentation, Release 1.0

22 Python Module Index

Index

A
aggregate_by_agg_col() (gene_burden.CMC method), 13
assign_variants_to_pop_frq_cats() (gene_burden.CMC

method), 13

C
CMC (class in gene_burden), 13
Cohort (class in gene_drop), 11
convert_ped_df_to_node_l() (gene_drop.NodeGenerator

method), 12
convert_tuple_to_ids() (relatedness.Relatedness method),

15

D
do_multivariate_test() (gene_burden.CMC method), 13
do_multivariate_tests() (gene_burden.CMC method), 13

F
Family (class in pof), 14
FamilyTree (class in gene_drop), 12
find_duplicates() (relatedness.Relatedness method), 15
fit_logit_model() (gene_burden.CMC method), 14

G
gene_burden (module), 13
gene_drop (module), 11
gene_drop() (gene_drop.Cohort method), 11
gene_drop() (gene_drop.FamilyTree method), 12
gene_drop_dfs() (gene_drop.FamilyTree method), 12
get_agg_cat_count_df() (gene_burden.CMC method), 14
get_agg_cat_prop_by_affection() (gene_burden.CMC

method), 14
get_all_family_l() (gene_drop.Cohort method), 11
get_all_sample_l() (gene_drop.Cohort method), 11
get_coef_pval_l() (gene_burden.CMC method), 14
get_exp_obs_df() (relatedness.Relatedness method), 15
get_exp_rel() (relatedness.Relatedness method), 15
get_exp_rel_df() (relatedness.Relatedness method), 15
get_family_pass_name_l() (pof.Pof method), 15

get_kinship_coef() (relatedness.Relatedness method), 16
get_relations_s() (relatedness.Relatedness method), 16
get_summary_str() (gene_drop.Node method), 12

L
log() (misc.Logger method), 16
log_all_genotypes() (gene_drop.FamilyTree method), 12
log_all_info() (gene_drop.FamilyTree method), 12
log_info() (pof.Family method), 14
Logger (class in misc), 16

M
make_fam_tree() (gene_drop.Cohort method), 11
make_map_reduce_jobs() (sge.SGE method), 16
misc (module), 16

N
Node (class in gene_drop), 12
NodeGenerator (class in gene_drop), 12

P
pass_po() (pof.Family method), 14
Pof (class in pof), 15
pof (module), 14

R
Relatedness (class in relatedness), 15
relatedness (module), 15
remove() (gene_drop.Cohort method), 12

S
set_offspring_genotype() (gene_drop.FamilyTree

method), 12
set_relationships() (gene_drop.NodeGenerator method),

12
SGE (class in sge), 16
sge (module), 16

23

	seqfam
	Introduction
	Requirements and installation
	Tutorial
	gene_drop
	pof
	gene_burden
	relatedness
	sge
	References

	API reference
	gene_drop
	gene_burden
	pof
	relatedness
	sge
	misc

	Indices and tables
	Bibliography
	Python Module Index

